UTRs were predicted by identifying the operons’ boundaries These

UTRs were predicted by identifying the operons’ boundaries. These were defined as sharp declines in coverage of the regions upstream or downstream of the start or stop codons, respectively (Methods).

Accordingly, 745 5’UTRs were identified and the median UTR length was approximately 29 nucleotides (nt) (Sheet 1 of Additional file 2). Although most 5’UTRs were small and typically similar to many other bacterial [24, 34], 8.86% of the 5’UTRs identified were longer than 100 nt. Long 5’UTR, particularly in prokaryotes, may contain cis-regulation element(s) such as the Shine-Dalgarno (SD) sequence, which mediates mRNA translational efficiency. Potential RNA elements (5’UTR > 15 nt) were scanned using the Rfam [35], but no conserved elements were identified. These observations are in agreement with previous work [36] and suggest Prochlorococcus may contain unknown cis-regulatory GANT61 sequences, like targets for ncRNAs. We also identified 337 3’UTRs (Sheet 2 of Additional file 2). When these sequences (3’UTR > 10 nt) were searched by the ARNold [37], only 11 significant termination signals were identified (Sheet 2 of Additional file 2). However, the high proportion (35.6%) of long 3’UTRs (> 60 nt) suggests that these regions may have other important roles that require further exploration. To identify new ORFs and ncRNAs, we analyzed the intergenic regions determined by current gene annotation (Sheet 2 of Additional file 3). Seven transcript units were identified

with high confidence, including two ORFs and five ncRNAs (Additional file 4). The two ORFs were conserved hypothetical proteins see more present in related subspecies such as P. marinus MIT9202, P. marinus W9, and P. marinus Telomerase MIT9515. All five identified ncRNAs were expressed in at least eight conditions (Additional file 4). In particular, TibYfr5 was the highest expressed ncRNA among five predicted ncRNAs, whereas TibYfr1 consistently showed the highest abundance under the light–dark conditions [38]. This suggests that TibYfr1

and TibYfr5 expression level may be influenced by changes in light. Highly expressed genes were overrepresented in the core genome but not in the flexible genome Using genome-wide expression data, we compared gene expression profiles between the MED4 core and flexible genomes [6]. Up to 94.3% of the 1251 genes in the core genome were expressed, and this was significantly higher than 84.9% of the genes expressed in the flexible genome (P < 0.001). Furthermore, a moderate but significant correlation was observed between the gene expression levels (mean RPKM of ten samples for each gene) and corresponding protein nonsynonymous substitution rates (Ka) (N = 1275, Spearman’s r = -0.68, P < 0.001; Figure 2). This observation that higher expressed genes evolve slowly, which has been observed in various organisms [13, 15, 17], might also be true in Prochlorococcus MED4. Figure 2 Correlation between the gene expression levels and nonsynonymous substitution rates (Ka).

J Proteome Res 2009,8(7):3367–3376 PubMed 93 Restrepo-Montoya D,

J Proteome Res 2009,8(7):3367–3376.PubMed 93. Restrepo-Montoya D, Vizcaino C, Nino LF, Ocampo M,

Patarroyo ME, Patarroyo MA: Validating subcellular localization prediction tools with mycobacterial proteins. BMC Bioinformatics 2009, 10:134.PubMed 94. Shen YQ, Burger G: ‘Unite and conquer’: enhanced prediction of protein subcellular localization by integrating multiple specialized tools. BMC Bioinformatics 2007, 8:420.PubMed 95. Gupta RS: The natural evolutionary relationships among prokaryotes. Critical reviews in microbiology 2000,26(2):111–131.PubMed 96. Rachel R, Wyschkony I, Riehl S, Huber H: The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea (Vancouver, BC) 2002,1(1):9–18. 97. Rudd KE: EcoGene: a genome sequence database for Escherichia coli K-12. AZD1390 Nucleic Acids Res 2000,28(1):60–64.PubMed 98. Itoh T, Okayama T, Hashimoto H, Takeda J, Davis RW, Mori H, Gojobori T: A low rate of nucleotide changes in Escherichia coli K-12 estimated from a comparison of the genome sequences between two different substrains. FEBS letters 1999,450(1–2):72–76.PubMed Selleck Cilengitide 99. Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, et al.: The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 2008,190(7):2597–2606.PubMed

100. Peterson KM, Mekalanos JJ: Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infection and immunity 1988,56(11):2822–2829.PubMed 101. Miyadai H, Tanaka-Masuda K, Matsuyama S, Tokuda Dapagliflozin H: Effects of lipoprotein overproduction

on the induction of DegP (HtrA) involved in quality control in the Escherichia coli periplasm. The Journal of biological chemistry 2004,279(38):39807–39813.PubMed 102. Thybert D, Avner S, Lucchetti-Miganeh C, Cheron A, Barloy-Hubler F: OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes. BMC genomics 2008, 9:637.PubMed 103. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR Jr: SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Molecular microbiology 2003,48(2):453–464.PubMed 104. Goder V, Spiess M: Topogenesis of membrane proteins: determinants and dynamics. FEBS letters 2001,504(3):87–93.PubMed 105. Martoglio B, Dobberstein B: Signal sequences: more than just greasy peptides. Trends in cell biology 1998,8(10):410–415.PubMed 106. Bingle LE, Bailey CM, Pallen MJ: Type VI secretion: a beginner’s guide. Current opinion in microbiology 2008,11(1):3–8.PubMed 107. Anderson DM, Schneewind O: A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science (New York, NY) 1997,278(5340):1140–1143. 108.

Mater Res Bull 2010, 45:961–968 CrossRef 21 Liang ZH, Zhu YJ: Sy

Mater Res Bull 2010, 45:961–968.CrossRef 21. Liang ZH, Zhu YJ: Synthesis of uniformly sized Cu 2 O crystals with star-like and flower-like morphologies. Mater Lett 2005, 59:2423–2425.CrossRef 22. Saka M, Yamaya F, Tohmyoh H: Rapid and mass growth of stress-induced

nanowhiskers on the surfaces of evaporated polycrystalline Cu films. Scripta Mater 2007, 56:1031–1034.CrossRef 23. Chen MJ, Yue YM, Ju Y: Growth of metal and metal oxide nanowires driven by the stress-induced migration. J Appl Phys 2012, 111:104305.CrossRef 24. Jayaraman N, Rangaswamy P: Oxide scale stresses in polycrystalline Cu/Cu 2 O system. Adv X-Ray Anal 1998, 39:421–432. 25. Sandersa PG, Witneya AB, Weertmana JR, Valievb RZ, Siegelc RW: Residual stress, strain and faults in nanocrystalline palladium and copper. Mater Sci Eng A 1995, 204:7–11.CrossRef CHIR-99021 mouse Competing interests The authors declare that they have no competing interests. Authors’ contributions LJH STI571 nmr designed and performed all the experiments, analyzed the data, and wrote the main manuscript text. YJ designed and conducted the whole study. AH and YPT performed the AFM characterization experiments. All authors reviewed the manuscript. All authors read and approved the final manuscript.”
“Background Vanadium pentoxide (V2O5) is the most stable crystallization form and is also the most applicable

in the industry among vanadium oxide systems such as VO, VO2, and V2O3. The orthorhombic layered structure of V2O5 promises a high ionic storage capacity for energy storage applications [1]. Recently, its quasi-one-dimensional nanostructures such as nanowires (NWs), nanobelts (NBs), and nanotubes have gained substantial attention. Due to high surface-to-volume ratio and high surface activity, V2O5 1D structures for various applications, such as field emitters [2–5], transistors [6, 7], chemical sensors [8–10], and lithium batteries [11–14], have been developed. In addition, V2O5 with a direct optical bandgap at visible-light region (E g = 2.2 to 2.7 eV) [2, 15–18] triclocarban also inspires the studies of optoelectronic applications

such as photodetection [2, 19], optical waveguide [20], and high-speed photoelectric switch [21]. Although device performance of the individual NW has been demonstrated in several studies, fundamental photoconduction (PC) properties and their corresponding surface effects were less studied than the known hopping transport [6, 21–24]. The potential difference of the transport properties of nanomaterials grown by different approaches was also less known. In this paper, we report the study of photoconductivities of V2O5 NWs grown by physical vapor deposition (PVD). The performance of the single-NW device and intrinsic PC efficiency of the material have been defined and discussed. The results are also compared with the reported data of the V2O5 counterpart synthesized by hydrothermal approach.

PubMedCrossRef 24 Li HJ, Zhang XY, Chen CX, Zhang YJ, Gao ZM, Yu

PubMedCrossRef 24. Li HJ, Zhang XY, Chen CX, Zhang YJ, Gao ZM, Yu Y, Chen XL, Chen B, Zhang YZ: Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov., gammaproteobacteria respectively isolated from coastal attached (fast) ice and surface seawater of the Antarctic. Int J Syst Evol Microbiol 2011, 61:2052–2057.PubMedCrossRef 25. Winkelmann N, Harder J: An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula . J Microbiol Methods 2009, 77:276–284.PubMedCrossRef 26. Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Béjà O: New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol

2005, 3:e273.PubMedCrossRef 27. Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts Selleckchem Captisol G, Wichels A, Brinkhoff T, Cypionka

H, Wagner-Döbler I: Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol 2010, 76:3187–3197.PubMedCrossRef 28. Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ: Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 2011, 6:e19725.PubMedCrossRef 29. Cogdell RJ, Durant I, Valentine J, Lindsay JG, Schmidt K: The isolation and partial characterisation of the light-harvesting pigment-protein complement of Rhodopseudomonas acidophila . Biochim Biophys Acta 1983, Interleukin-3 receptor 722:427–435.CrossRef 30. McLuskey K, Prince SM, Cogdell RJ, Isaacs NW: The crystallographic see more structure of the B800–820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila Strain 7050. Biochemistry 2001, 40:8783–8789.PubMedCrossRef 31. Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V: Chromocurvus halotolerans gen. nov., sp. nov., a gammaproteobacterial obligately aerobic anoxygenic phototroph, isolated from a Canadian hypersaline spring. Arch Microbiol 2011, 193:573–582.PubMedCrossRef 32. Spring S, Riedel T: Mixotrophic growth of bacteriochlorophyll a -containing

members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the cellular redox state. BMC Microbiol 2013, 13:117.PubMedCrossRef 33. Bonomo J, Gill RT: Amino acid content of recombinant proteins influences the metabolic burden response. Biotechnol Bioeng 2005, 90:116–126.PubMedCrossRef 34. Shand RF, Blum PH, Mueller RD, Riggs DL, Artz SW: Correlation between histidine operon expression and guanosine 5′-diphosphate-3′-diphosphate levels during amino acid downshift in stringent and relaxed strains of Salmonella typhimurium . J Bacteriol 1989, 171:737–743.PubMed 35. Zhang YM, Rock CO: Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 2008, 6:222–233.PubMedCrossRef 36.

All the SERS spectra were collected using × 50, NA = 0 5, long wo

All the SERS spectra were collected using × 50, NA = 0.5, long working distance INK-128 objective and the laser spot size is about 2 μm. SERS spectra were recorded with an accumulation time of 10 s. After the SAM of benzene thiol was formed on the substrate surface, a single scan was performed. To get an accurate approximation of the enhancement factors, we measured the neat Raman spectrum of benzene thiol. For the measurement of the neat Raman spectrum of benzene thiol, the power of the 785-nm laser was 1.031 mW, the accumulation time was 10 s, the spot size was 20 μm, and the depth of focus was 18 μm. Figure 2a

shows the Raman spectra of the benzene thiol SAM on the P-AAO-Au (black), W-AAO1-Au (green), and W-AAO2-Au (red) with all having been normalized to account for the accumulation time and laser power. To characterize the SERS performance of our substrates, commercial Klarite® substrates were used as reference samples which consists of gold-coated textured

silicon (regular arrays of inverted pyramids of 1.5-μm wide and 0.7-μm deep) mounted on a glass microscope slide. Figure 2b shows the normalized Raman spectra of the benzene thiol SAM on the W-AAO2-Au (red), on the Klarite® substrate (blue), and neat thiophenol (black). Figure 2 Comparison of substrates and neat benzene thiol, Raman spectra, and spatial mapping. (a) Comparison of the SERS of substrates P-AAO-Au, W-AAO1-Au, and W-AAO2-Au. (b) Comparison of the SERS of substrates W-AAO2-Au (red), Klarite® (blue), and neat Raman spectra (black) of benzene thiol collected at 785-nm incident. (c) Zoomed-in region of the spectra showing Selleck OSI 906 the three primary modes located near 1,000 cm-1, with the 998 cm-1 used for calculation of the SERS enhancement factor. The number of molecules of benzene thiol that each measurement is probing is denoted in the figure. (d) Spatial mapping of the SERS intensity at 998 cm-1

of SERS substrate W-AAO2-Au over an area larger than 20 μm × 20 μm. The background is the optical reflection image of substrate W-AAO2-Au photographed through a microscope with a × 50 objective. The calculation of EF The average EFs were calculated from the following equation Protein tyrosine phosphatase [8, 42]: where I SERS and I Raman are the normalized Raman intensity of SERS spectra and neat Raman spectrum of benzene thiol, respectively. N SERS and N Raman represent the numbers of molecules contributing to SERS signals and neat Raman signals of benzene thiol, respectively. I SERS and I Raman can be measured directly from the Raman spectra. N Raman is defined as follows [42]: where ρ = 1.073 g mL-1 and MW = 110.18 g mol-1 are the density and molecular weight of benzene thiol, respectively, and V is the collection volume of the liquid sample monitor. N A is Avogadro’s number. N SERS is defined as follows [42]: where ρ surf is the surface coverage of benzene thiol which has been reported as approximately 0.544 nmol cm-2[8, 42], and S surf is the surface area irradiated by exciting laser.