To do this, AZD6094 purchase 24 h liquid (Brucella broth)
culture of each strain was adjusted to OD600 nm of 1.0. A 500 μl cell sample of each strain was then centrifuged at 5500 rpm for 1 min. Culture supernatants were removed and cell pellets were fully resuspended in 1 ml sterile PBS. 100 μl protein sample was collected. The same volume of 2 × sample buffer was added and boiled for 10 min. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent PD98059 nmr immunoblotting were carried out as described previously under standard conditions [25]. The gel contained 10% acrylamide. 4 μl protein stock from each strain sample was loaded into each well of the SDS-PAGE gel. For immunoblotting, proteins were transferred from SDS-PAGE gels to nitrocellulose
paper by the methanol Tris-glycine system described by Towbin et al. [31]. To see whether similar amounts of protein were loaded using our methodology, membranes were Syk inhibitor inspected following Ponceau red staining prior to immunoblotting; protein levels appeared similar on each membrane by inspection. The blots were incubated with rabbit polyclonal antibodies against H. pylori flagellin and hook protein (a generous gift from Paul O’Toole) [32]. Bound antibodies were detected using secondary anti-rabbit IgG alkaline phosphatase conjugate antibody (Sigma, UK). The blots were developed using the BCIP/NBT substrate system (Dako, UK). The quantitative scan of the protein bands was performed using a GS-800 Calibrated Densitometer (Biorad). The reflective density (RD) of each protein band was measured using the Quantity One 4.6.5 software (Biorad). RNA extraction and transcription analysis
RNA was isolated from H. pylori cells grown in BB medium for 24 h. Cultures were treated with RNA protection reagent (QIAGEN, UK) and RNA was extracted using RNeasy mini kit (QIAGEN, UK). Contaminating genomic DNA was removed using a DNA free kit (Ambion). Synthesis of cDNA was performed using Ominiscript RT kit (QIAGEN, UK) and random hexamers (Roche, Germany). Quantitation of transcripts of selected genes of interest was accomplished by quantitative reverse transcription-PCRs (qRT-PCRs) C59 ic50 using Rotor-gene 3000. Primers utilised in RT-PCRs are listed in Table 2. All RT-PCR reaction mixtures contained 12.5 μl of SYBR Green Mix (QIAGEN, UK), 5 μl of gene specific primers, 2 μl cDNA template (cDNA was diluted 10-fold prior to adding into the RT-PCR reactions) and RNase free water to a final volume of 25 μl. The amplification program was 95°C for 15 min, followed by 35 cycles of 95°C for 15 sec, 56°C for 60 sec, and 72°C for 30 sec. All samples, including the controls (16 S rRNA and no-template), were run in triplicate. Transcript levels of each gene were normalised to the 16 S rRNA in each sample. The relative quantity of transcription of each gene was obtained using Pfaffl’s analytical methodology.