Arch Phytopathol Plant Protect 2013, 46(14):1756–1768 CrossRef 30

Arch Phytopathol Plant Protect 2013, 46(14):1756–1768.CrossRef 30. Kaur T, Manhas RK: Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16. J Basic Microbiol 2013, http://​dx.​doi.​10.​1002/​jobm.​201300086.​ 31. Becher PG, Keller S, Jung G, Sussmuth

RD, Juttner F: Insecticidal activity of 12-epi-hapalindole J isonitrile. Phytochemistry 2007, 68:2493–2497.PubMedCrossRef 32. Rishikesh GDR, Haque MA, Islam MAU, Rahman MM, Banu MR: In-vitro insecticidal activity of crude extracts of Streptomyces sp. against larvae of Sitophilus oryzae . J Drug Discovery Therapeutics 2013, 1(8):60–63. 33. Xiong L, Li J, Kong F: Streptomyces sp. 173, an AG-881 insecticidal micro-organism from marine. Lett Appl Microbiol 2004, 38:32–37.PubMedCrossRef 34. Xiong L, Jian-zhong L, Hui-li W: Streptomyces avermitilis from marine. J Env Sci 2005, LY3039478 chemical structure 17(1):123–125. 35. Abouelghar GE, Sakr H, Ammar HA, Yousef A, Nassar M: Sublethal effects of spinosad (tracer®) on the Cotton leafworm (lepidoptera: noctuidae). J Plant Protect Res 2013, 53(3):ᅟ. doi:10.2478/jppr-2013-0041. 36. Nathan SS, Kalaivani K, Murugan K, Chung PG: Efficiency of Neem limnoids on Cnaphalocrocis medinalisi (Guenee) (Lepidoptera: Pyralidae) the rice leaffolder.

Crop Protect 2005, 8:760–763.CrossRef 37. Wheeler DA, Isman MB: Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura . Entomol Exp Appl 2001, 98:9–16.CrossRef 38. Koul O, Shankar JS, Mehta N, Taneja SC, Tripathi AK, Dhar KL: Bioefficacy of crude extracts of Aglaia species (Meliaceae) and some active fractions against lepidopteran larvae. J Appl Entomol 1997, 121:245–248.CrossRef 39. Waldbauer GP: The

consumption Carnitine palmitoyltransferase II and utilization of food by insects. Adv Insect Physiol 1968, 5:229–288.CrossRef Competing interests The authors declare that they have no competing interest. Authors’ contributions Conceived and participated in the design of the experiments and supported the execution of the experiments: SKS RKM TK AV. Performed the experiments: TK AV. Analyzed the data: AV SKS TK RKM. Wrote the manuscript: TK AV RKM SKS. All authors read and approved the final manuscript.”
“Background Neonatal meningitis (NM) and sepsis is the third most common disease in neonates that accounts for approximately 393,000 deaths per year worldwide [1]. Escherichia coli has been identified as the most predominant Gram-negative pathogen associated with NM [2–5]. Despite advanced antimicrobial therapy and supportive care, mortality and morbidity rates of NM due to neonatal meningitis-associated E. coli (NMEC) continue to be as high as 30-50% [6]. Other than high mortality, adverse consequences such as mental retardation, vision loss or impairment, hearing impairment and speech impediment of NM in surviving neonates are also a major medical concern [7,8]. Plasticity of E.

Comments are closed.