The BGJ398 mouse grades with less than 2+ were considered as low reactivity for VEGF, otherwise as high reactivity. Evaluation of microvessel density Microvessels were identified by immunostaining endothelial cells with the mouse anti-human
monoclonal antibody CD34. Microvessel density (MVD) was assessed according to the international consensus [12]. The entire section was scanned systematically at low magnification (× 100) in order to identify the most intense areas of neovascularization (“”hotspots”") within the tumor. After five hotspots areas with the highest number of capillaries and small venules were identified, microvessels were counted at high power magnification (× 400), and the average of count in five fields was calculated. MVD was quoted as a continuous variable [13, 14]. Statistical analysis The selleck chemicals Chi-square test or Fisher’s exact probability test for proportion was used to analyze the relationship between SPARC and VEGF expression, and clinicopathologic characteristics. One-way ANOVA test and Linear regression analysis was used to assess the correlations among the continuous variables. Spearman rank correlation coefficient test analysis was performed to examine the correlations among different variables.. Survival curves were plotted by the Kaplan-Meier method, and compared by the log-rank test. To identify independent prognostic factors, including cancer recurrence,
distant metastasis or death from disease, the Cox regression analysis was performed with the endpoints for disease-free survival (DFS) and overall survival (OS), respectively. A P-value of less than 0.05 was considered statistically significance. SPSS 11.5 was used for the statistical analysis. Results Expression of SPARC, VEGF, and CD34 in colon cancer and normal colon mucosa tissue Expression of SPARC protein was determined by immunohistochemistry staining in 114 cases of paraffin-embedded colon cancer tissues and their corresponding non-diseased colon tissue. SPARC was mainly localized in the cytoplasm and was detected in the normal colonic epithelial cells (Fig 1a), the colon
cancer cells and the mesenchymal and stromal Methocarbamol cells (MSC) of colon cancer (Fig 1b). In this study, the degree of the expression of SPARC showed that 81 cases (71.1%) with low reactivity and 33 cases (28.9%) with high reactivity in tumor cells, 61 cases (53.5%) with low reactivity and 53 cases (46.5%) with high reactivity in the MSC surrounding the tumor, and 84 cases (73.7%) with low reactivity and 30 cases (26.3%) with high reactivity in the normal colon mucosa tissue, respectively. SPARC expression was no significant difference between the reactivity in tumor cells and in their corresponding non-diseased colon mucosa (P > 0.05), but was statistically significant difference between that in MSC and in tumor cells (P < 0.05), and between that in MSC and normal mucosa in colon tissue (P < 0.05), respectively.