The catalytic core was defined

The catalytic core was defined BMS202 purchase by a set of structurally conserved elements, including elements P3 to P8. G391-C277 of intron-F was assumed to be G-binding positions [14]. Extended P5 and P9 stems were displayed in the putative structure of intron-F from PV1. Nine intron-Fs from nine strains (PV2, 3, 28, 33, 34 and 41 and TH9, 31 and 35) of P. verrucosa

were predicted to be the same structures as the putative structure of intron-F derived from PV1 drawn in Figure 4[A], alternatively, shown in Additional file 3. These nucleotide variations among intron-F were observed mainly in the loop and at four positions where one nucleotide of P5a, two of P5.1a and one of P5.2 stem were positioned. The base pairs GU and CG within P6 were

formed in the core region of intron-F [12]. The nucleotides A71, A72, U73 were located in segments J3/4 of PV1 intron-F [15–18]. These predictions of secondary structure revealed that all intron-Fs were IC1 group 1 introns. Figure 4 A-C. – Diagrams for predicted secondary structure of P. verrucosa. [A]: intron-F from rDNA of PV1, [B]: intron-G from PV1 and [C]: intron-G from PV3. Capital letters indicate intron sequences and lowercase letters indicate flanking exon sequences. Arrows point to the 5′ and 3′ splice sites. The guanosin cofactor-binding sites are marked with *. The structure of intron-G (L1921) from PV1 was drawn just as was done for intron-Fs (Figure 4[B]). A G-C pair within P7, i.e. G390-C360, was assumed to be the G-binding positions. The GU-CG pair of P6 and the AAU in J3/4 was the same as in the intron-F core region of PV1. This putative Gilteritinib intron-G exhibited expanded regions of P1 and P5. The three intron-Gs of PV1, PV33 and PV34 were found to be similar among the three strains. Different features were found in PV3 as shown Lck in Figure 4[C] wherein the sequence of PV3 differed in P1 region among four trains; namely, short stems in P1b and P1c and small bulge loops of L1 and L1a (Additional file 4). Moreover, PV3 added P2.0 and P8c, although the other intron-Gs did not. Prediction structures in the remaining two introns of PV33 and PV34 are not shown. Nevertheless, all subgroups

of intron-G were also identified as IC1, based on comparison of tertiary structures across segments P3-7 of the four strains. In conclusion, we have identified that the ten intron-Fs and four intron-Gs of P. verrucosa belong to IC1 group 1 introns. Characterization of intron-H Loss of P5abcd domain in derived S788 introns was correlated with inability to self-splice in vitro in a previous report [19]. Accordingly, we have not confirmed LY333531 datasheet insertion positions of intron-H by RT-PCR. However, we examined PV-28 strain as the representative strain of intron-H by analyzing the sequence alignment of the core region of subgroup IE from other organisms in the database. Moreover, we predicted the secondary structure of this intron-H as shown in Figure 5.

Comments are closed.