Genome annotation Genes were identified

Genome annotation Genes were identified selleck chemical U0126 using Prodigal [33] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePrimp pipeline [34]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were combined to assert a product description for each predicted protein. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [35], RNAMMer [36], Rfam [37], TMHMM [38], and SignalP [39]. Additional gene prediction analyses and functional annotation were performed within the Integrated Microbial Genomes (IMG-ER) platform [40].

Genome properties The genome is 6,200,534 bp long with a 62.84% GC content (Table 3, Figure 3) and comprised of a single chromosome. From all the genes present in the genome, 6,013 were protein coding genes and 67 RNA only encoding genes. Two hundred and twenty one pseudogenes were also identified. The majority of protein coding genes (4,875; 80.18%) were assigned a putative function whilst the remaining protein coding genes were annotated as encoding hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4. Table 3 Genome Statistics for Mesorhizobium australicum strain WSM2073T. Figure 3 Graphical circular map of the chromosome of Mesorhizobium australicum WSM2073T.

From outside to the center: Genes on forward strand (color by COG categories as denoted by the IMG platform), Genes on reverse strand (color by COG categories), RNA genes … Table 4 Number of protein coding genes of Mesorhizobium australicum WSM2073T associated with the general COG functional categories. Acknowledgements This work was performed under the auspices of the US Department of Energy��s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. We gratefully acknowledge Drug_discovery the funding received from Australian Research Council Discovery grant (DP0880896), Murdoch University Strategic Research Fund through the Crop and Plant Research Institute (CaPRI) and the Centre for Rhizobium Studies (CRS) at Murdoch University. The authors would like to thank the Australia-China Joint Research Centre for Wheat Improvement (ACCWI) and SuperSeed Technologies (SST) for financially supporting Mohamed Ninawi��s PhD project.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>