, 2008). Based on our results, it is conceivable that in TSC animals, when TOR is upregulated, synaptic activity in circuits is enhanced due to the retrograde action of TOR on neurotransmitter release, in a manner independent of growth related phenotype associated with TOR gain of function. Therefore, our results reveal a role for TOR in the retrograde regulation of neurotransmitter release in neurons, an avenue to explore aimed at potential therapeutic
approaches. Based on our genetic interaction experiments and biochemical assessment, we conclude that TOR normally acts downstream of synaptic activity. We observed that postsynaptic phosphorylation of S6K, a bona fide TOR target, is increased in GluRIIA mutants, suggesting that TOR signaling may be upregulated in these mutants. Consistently, our genetic experiments show that removal of one gene copy of either Tor or S6k is sufficient
www.selleckchem.com/products/DAPT-GSI-IX.html to block the homeostatic Selleck NVP-BKM120 response in GluRIIA mutants. Furthermore, when TOR is overexpressed in GluRIIA mutants no additional increase in quantal content is observed. This lack of an additive effect suggests that a common molecular pathway may be utilized by GluRIIA mutants and larvae overexpressing TOR ( Figure 8I). This is further supported by our observations that the enhancement in neurotransmission in response to TOR (or S6K) overexpression and that triggered in GluRIIA loss of function are both highly dependent on wild-type availability of eIF4E. These results together support the idea that TOR functions downstream of synaptic activity at the NMJ. Further experiments are needed to understand how changes in synaptic activity may regulate
the activity Tryptophan synthase of TOR. Our findings are consistent with a growing body of evidence that implicates the involvement of TOR/S6K in the regulation of synaptic plasticity in mammals (Antion et al., 2008, Hoeffer and Klann, 2010 and Jaworski and Sheng, 2006). Our results indicate that TOR/S6K may be exerting their function through a retrograde mechanism to enhance neurotransmission. As such, our findings reveal a novel mode of action for TOR, through which it can modulate circuit activity in higher organisms. Further experiments are required to verify if this mode of action is conserved in higher organisms. One potential way in which general translational mechanisms can lead to specific changes in synaptic function is through localized translation. In both vertebrates and invertebrates, local postsynaptic translation is required for normal synaptic plasticity and is itself modulated by synaptic function (Liu-Yesucevitz et al., 2011, Sigrist et al., 2000, Sutton and Schuman, 2006 and Wang et al., 2009). This is perhaps best demonstrated in cultured hippocampal neurons, where local protein synthesis at postsynaptic sites is regulated by postsynaptic activity.