05; 95% confidence interval [CI], 0.55–2.03). Even the per protocol analysis in compliant participants did not show a statistically significant difference between the groups (HR, 0.77; 95% CI, 0.25–2.38). One of the strengths of the Amsterdam Hip Protector Study—in addition to its use of individual randomization—was its setting: 45 different homes for the elderly and nursing homes in which nurses had to supervise the wearing of the hip protectors, suggesting that the results of this trial can be generalized
to most institutionalized elderly persons. One of the more recent studies that further ignited controversy about this type of intervention was the Hip Impact Protection Project, published by Kiel and colleagues [154]. In this multi-center, randomized controlled clinical trial, 37 nursing homes were randomly assigned to having residents wear a 1-sided hip protector on CCI-779 datasheet the left or right hip, allowing each participant to serve as his or her own control. The energy-absorbing/shunting hip protector was selected GNS-1480 concentration based on its performance in a pilot study and biomechanical testing that demonstrated superior capacity to reduce peak impact force in simulated drop-weight experiments. The hip protector was made
of an outer layer of buy GW-572016 polyethylene vinyl acetate foam, backed by a hard high-density polyethylene shield, which in turn was backed by a layer of polyethylene vinyl acetate foam. Garments with pad pockets on 1 side were available in various sizes. Each resident was provided as many garments as needed for use around-the-clock, allowing for soilage, laundry turnaround time, losses, and deterioration over time.
Participants were 1,042 nursing home residents with a mean age of 85 years; 79% were women. After a 20-month follow-up (676 person-years of observation), the study was terminated due to a lack of efficacy. The incidence rate of hip fracture on protected versus unprotected hips did not differ (3.1%; 95% CI, 1.8–4.4% vs 2.5%; 95% CI, 1.3%–3.7%; P = .70). For the 334 nursing home residents with greater than 80% adherence to hip protector use, the incidence rate of hip fracture on protected vs unprotected hips did not differ Resveratrol (5.3%; 95% CI, 2.6%–8.8% vs 3.5%; 95% CI, 1.3%–5.7%; P = .42), adding to the increasing body of evidence that hip protectors, as currently designed, may not be effective for preventing hip fracture [151, 153, 155]. In addition to the inconsistency of the results [144–154, 157] and the lack of documented cost-effectiveness [158], one of the main concerns with external hip protectors is poor compliance [159]. Most of the residents who experienced a hip fracture in negative studies were not wearing the protector at the time of the fall [149, 151, 153, 154]. Thus, adherence is a factor that could potentially be improved with good results.